
1 INTRODUCTION 3

1 Introduction

Finite-state automata have a relatively long history of application in machine
learning. The majority of these applications involve sequential data. For example,
they are or have been used in speech recognition, machine translation, protein
function analysis, and other tasks in natural language and computational biology.

However, the application of these data structures in machine learning is far
from main stream. In fact, their use decreased with the advent of end-to-end
deep learning. However, the recent development of frameworks for automatic
differentiation with automata suggests there may be renewed interest in the
application of automata to machine learning.

This tutorial introduces weighted automata and their operations. Once this
fundamental data structure is well understood, we then continue to build our
intuition by working through some extended examples. At minimum, I hope that
this tutorial engenders an appreciation for the potential of automata in machine
learning. Ideally for some readers this tutorial will be a launching point for the
incorporation of automata in machine-learning research and applications.

However, before launching into the more technical content, let’s start with some
broader perspectives in order to motivate the use of automata in machine learning.

1.1 Monolithic or Modular

In the past, complex machine-learning systems, like those used in speech recogni-
tion, involved many specialized hand-engineered components. The trend is now
towards the opposite end of the spectrum. Most machine-learning applications in-
volve a single, monolithic neural network. Both of these extremes have advantages,
and both have disadvantages.

A primary advantage of automata in machine learning is their ability to harness
the best of both worlds. Automata are capable of retaining many if not all of the
advantages of a multi-component, hand-engineered system as well as those of a
monolithic deep neural network. The next few paragraphs explain some of these
advantages and the regime to which they apply.

Modular: One of the advantages of multi-component, hand-engineered systems
over monolithic neural networks is modularity. In traditional software design
modularity is a good thing. Modular systems are easier to develop since part of
the system can be changed without needing to change the rest. In machine-learning
systems, modularity is useful to avoid retraining the entire system when only



1 INTRODUCTION 4

part of the model needs to be updated. Modularity can also be useful when the
individual modules can be reused. For example, speech recognition systems are
built from acoustic models and language models. Acoustic models can be language
agnostic and used for different languages. Language models are general text based
models which can be used in many different tasks other than speech recognition.

Compound errors: A primary disadvantage of modular systems is that errors
compound. Each module is typically developed in isolation and hence unaware of
the types of errors made by the modules from which it receives input. Monolithic
systems on the other hand can be thought of as being constructed from many
sub-components all of which are jointly optimized towards a single objective.
These sub-components can learn to compensate for the mistakes made by the
others and in general work together more cohesively.

Adaptable: Modular systems are typically more adaptable than monolithic
systems. A machine-learning model which is tuned for one domain usually won’t
work in another domain without retraining at least part of the model on data
from the new domain. Monolithic neural networks typically require a lot of data
and hence are difficult to adapt to new domains. Modular systems also need to
be adapted. However, in some cases only a small subset of the modules need
be updated. Adapting only a few sub-modules requires less data and makes the
adaptation problem simpler.

Learn from data: One of the hallmarks of deep neural networks is their
ability to continue to learn and improve with larger data sets. Because of the
many assumptions hard-wired into more traditional modular systems, they hit a
performance ceiling much earlier as data set sizes increase. Retaining the ability
to learn when data is plentiful is a critical feature of any machine-learning system.

Prior knowledge: On the other hand, one of the downsides of deep neural
networks is their need for large data sets to yield even decent performance.
Encoding prior knowledge into a model improves sample efficiency and hence
reduces the need for data. Encoding prior knowledge into a deep neural networks
is not easy. In some cases, indirectly encoding prior knowledge into a neural
network can be done, such as the translation invariance implied by convolution
and pooling. However, in general, this is not so straightforward. Modular systems
by their very nature incorporate prior knowledge for a given task. Each module is
designed and built to solve a specific sub-task, usually with plenty of potential for
customization towards that task.



1 INTRODUCTION 5

Modular and monolithic systems have complementary advantages with respect
to these four traits. Ideally we could construct machine-learning models which
retain the best of each. Automata-based models will take us a step closer towards
this goal. However, to use automata to their full potential we have to overcome a
couple of challenges. The key is enabling the use of weighted automata in training
the model itself. This requires 1) efficient implementations and 2) easy to use
frameworks which support automatic differentiation.

1.2 Advantages of Differentiable Automata

A key to unlocking the potential of automata in machine learning is enabling their
use during the training stage of machine-learning models. All of the operations
I introduce later are differentiable with respect to the arc weights of their input
graphs. This means that weighted automata and the operations on them can be
used in the same way that tensors and their corresponding operations are used in
deep learning. Operations can be composed to form complex computation graphs.
Some of the weighted automata which are input to the computation graph can
have parameters which are learned. These parameters can be optimized towards
an objective with gradient descent.

Automatic differentiation makes computing gradients for complex computation
graphs much simpler. Hence, combining automatic differentiation with weighted
automata is important to enabling their use in training machine-learning models.

Sophisticated machine-learning systems often separate the training and inference
stages of the algorithm. Multiple models are trained in isolation via one code path.
For prediction on new data, the individual models are combined and rely on a
different code path. The constraints of the two regimes (training and inference)
are such that separation from a modeling and software perspective is often the
best option. However, this is not without drawbacks.

First, from a pragmatic standpoint, having separate logic and code paths for
training and inference requires extra effort and usually results in bugs from
subtle mismatches between the two paths. Second, from a modeling standpoint,
optimizing individual models in isolation and then combining them is sub-optimal.

One of the benefits of combining automatic differentiation with weighted automata
is the potential to bring the training and inference stages closer together. For
example, speech recognition systems often uses hand-implemented loss functions at
training time. However, the decoder (used for inference) brings together multiple
models represented as automata (lexicon, language model, acoustic model, etc.)
in a completely different code path. By enabling automatic differentiation with



1 INTRODUCTION 6

graphs, the decoding stage can also be used for training. This has the potential to
both simplify and improve the performance of the system.

Combining automatic differentiation with automata creates a separation of code
from data. Loss functions like Connectionist Temporal Classification, the Auto-
matic Segmentation criterion, and Lattice-Free Maximum Mutual Information
have custom and highly optimized software implementations. However, these loss
functions can all be implemented using graphs and (differentiable) operations
on graphs. This separation of code from data, where graphs represent the data
and operations on graphs represent the code, has several benefits. First, the
separation simplifies the software. Second, the separation facilitates research by
making it easier to experiment with new ideas. Lastly, the separation enables the
optimization of graph operations to be more broadly shared.

1.3 Comparison to Tensors

Modern deep learning is built upon the tensor data structure and the many
operations which take as input one or more tensors. Some of the more common
operations include matrix multiplication, two-dimensional convolution, reduction
operations (sum, max, product, etc), and unary and binary operations.

Automata are an alternative data structure and the operations are quite different
in general. However, one can draw a loose analogy between the categories of
operations with automata and those with tensors. Table 1.1 shows some of the
common operations on tensors and their analogous operations on automata. The
analogy is quite loose, but still useful at the very least as a mnemonic device and
perhaps can help build intuition for the various operations on graphs.

For example, superficially the formula for matrix multiplication and transducer
composition are quite similar. Assume we have three matrices such that C = AB.
The element at position (i, j) of C is given by:

Cij =
∑
k

AikBkj . (1)

Assume we have three transducers (graphs) where C is the composition of A and
B, then the score of the path pair (u,v) is given by:

C(u,v) = LSE
r

A(u, r) + B(r,v), (2)

where LSE is the log-sum-exp operation. Don’t worry if the details are not clear
– section 4 covers transducer composition. The point is that both operations,



1 INTRODUCTION 7

transducer composition and matrix multiplication, accumulate over an inner
variable the values from each of the inputs. In matrix multiplication this is the
shared dimension of the matrices A and B. In graph composition the inner variable
is the shared path r.

Table 1.1: The table shows loosely analogous operations between tensors and automata
(acceptors and transducers).

Tensor Automata

Matrix multiplication, convolution Intersect, compose

Reduction ops (sum, max, prod, etc.) Shortest distance (forward, Viterbi)

Unary ops (power, negation, etc.) Unary ops (closure)

n-ary ops (addition, subtraction, etc.) n-ary ops (concatenation, union)

A higher-level analogy to tensor-based deep learning can also be made. Modern
machine-learning frameworks like PyTorch and TensorFlow (and their ancestors
like Torch and Theano) were critical to the success of tensor-based deep learning.
These frameworks include support for automatic differentiation. They also provide
easy to use access to extremely efficient implementations of the core operations. In
the same way, automata-based machine learning should benefit from frameworks
with these features. We are just beginning to see new developments in frameworks
for automata-based machine learning including GTN1 and k2.2 Perhaps these will
encourage the use of automata in machine learning.

1.4 History and Bibliographic Notes

Hopcroft et al. [12] provides an excellent introduction to non-weighted automata.
Mohri [15] gives a more formal and general treatment of weighted automata and
associated algorithms.

Weighted finite-state automata are commonly used in speech recognition, natural
language processing, optical character recognition, and other applications [6, 13,
14, 17, 18]. Pereira and Riley [20] developed an early application of weighted
automata to speech recognition, though before that there were other applications in
natural language processing [21, 23]. The Graph Transformer Networks of Bottou

1I am a co-author of the GTN framework which is open source at https://github.com/

gtn-org/gtn
2The k2 framework is the successor of Kaldi and is open source at https://github.com/

k2-fsa/k2

https://github.com/gtn-org/gtn
https://github.com/gtn-org/gtn
https://github.com/k2-fsa/k2
https://github.com/k2-fsa/k2


1 INTRODUCTION 8

et al. [5], a similar though more general framework, were developed around the
same time and applied to character recognition in images.

The sequence criteria mentioned in section 1.2, namely Connectionist Temporal
Classification [9], the Automatic Segmentation criterion [8], and Lattice-free Max-
imum Mutual Information [22], are most commonly used in speech recognition.
Section 6 shows how to implement a subset of these using weighted automata.
Hannun [10] gives a more detailed introduction to Connectionist Temporal Classi-
fication.

In terms of software, two of the better known libraries for operations on WFSTs
are OpenFST [16] and its predecessor FSM [3]. In section 1.3, I compared weighted
automata to tensors. PyTorch [19] and TensorFlow [2] are two of the most used
libraries for tensor-based deep learning with automatic differentiation. These were
based on earlier frameworks including Torch [7] and Theano [4]. Libraries which
support automatic differentiation with weighted automata have only recently been
developed [1, 11].


	Introduction
	Monolithic or Modular
	Advantages of Differentiable Automata
	Comparison to Tensors
	History and Bibliographic Notes


