
6 EXTENDED EXAMPLES 45

0

a

b

c

1
a

2
a

a

b

c

Figure 6.1: A graph which matches the bigram aa.

0 1
a/0

2
a/0

3
a/0

4
b/0

5
a/0

6
a/0

Figure 6.2: A representation of the sequence aaabaa as a linear graph for use in computing
the frequency of a given n-gram.

6 Extended Examples

6.1 Counting n-grams

In this example, we’ll use graph operations to count the number of n-grams in a
string.

Suppose we have a string aaabaa and we want to know the frequency of each
bigram. In this case the bigrams contained in the string are aa, ab, and ba with
frequencies of 3, 1, and 1 respectively. In the general case we are given an input
string and an n-gram and the goal is to count the number of occurrences of the
n-gram in the input string.

For a given n-gram, the first step is to construct the graph which matches that
n-gram at any location in the string. If y denotes the n-gram, we want to construct
the graph equivalent of the regular expression . ∗ y.∗ where .∗ indicates zero of
more occurrences of any token in the token set.

Suppose we want to count the number of occurrences of the bigram aa in aaabaa.
For the bigram aa, and the token set {a, b, c}, the n-gram matching graph is shown
in figure 6.1. The first and last state allow self-loops on any token in the token
set. These states correspond to the .∗ at the beginning and end of the expression
. ∗ y.∗.

We can encode the string aaabaa with a simple linear graph, as in figure 6.2.

We then compute the intersection of the graph representing the string and the

6 EXTENDED EXAMPLES 46

0

1a/0

2

a/0

3
a/0

4
a/0

5

a/0

6

a/0

a/0

7
a/0

8
b/0

9
b/0

10
a/0

11
a/0

12

a/0

a/0

Figure 6.3: The graph represents the intersection of the n-gram graph for aa with the
graph representing aaabaa. The number of unique paths in this graph, in this case 3, is
the frequency of the n-gram ab.

graph representing the bigram. The intersected graph is in figure 6.3. The number
of paths in this graph represents the number of occurrences of the bigram in the
string.

Since each path has a weight of 0, we can count the number of unique paths in
the intersected graph by using the forward score. Assume the intersected graph
has p paths. The forward score of the graph is s = log

∑p
i=1 e

0 = log p. So the
total number of paths is p = es.

6.2 Edit Distance

In this example we’ll use transducers to compute the Levenshtein edit distance
between two sequences. The edit distance is a way to measure the similarity
between two sequences by computing the minimum number of operations required
to change one sequence into the other. The Levenshtein edit distance allows for
insertion, deletion, and substitution operations.

For example, consider the two strings “saturday” and “sunday”. The edit distance
between them is 3. One way to minimally edit “saturday” to “sunday” is with
two deletions (D) and a substitution (S) as below:

s a t u r d a y

D D S

s u n d a y

We can compute the edit distance between two strings with the use of transducers.
The idea is to transduce the first string into the second according to the allowed
operations encoded as a graph.

6 EXTENDED EXAMPLES 47

0

1

ε:a/1

ε:b/1

2
a:ε/1

b:ε/1

3

a:b/1

b:a/1

4

a:a/0

b:b/0

Figure 6.4: An example of an edits graph E for the token set {a, b}. The graph encodes
the allowed edit distance operations and their associated penalties.

We first construct an edits graph E which encodes the allowed operations. An
example of an edits graph assuming a token set of {a, b} is shown in figure 6.4.
The insertion of a token is represented by the arcs from state 0 to state 1 and has
a cost of 1. The deletion of a token is represented by the arcs from state 0 to state
2 which also incur a cost of 1. All possible substitutions are encoded in the arcs
from 0 to 3 and again have a cost of 1. We also have to encode the possibility of
leaving a token unchanged. This is represented on the arcs from 0 to 4, and the
cost is 0.

We then take closure of the edits graph E to represent the fact that we can make
zero or more of any of the allowed edits. We then encode the first sequence x in a
graph X and the second sequence y in a graph Y. All possible ways of editing x
to y can be computed by taking the composition:

P = X ◦ E∗ ◦ Y.

The graph P represents the set of all possible unique ways we can edit the sequence
x into y. The score of a given path in P is the associated cost. We can then find
the edit distance by computing the path with the smallest score in P. For this,
we could use the Viterbi algorithm with a min instead of a max. Alternatively, we
can use weights of −1 instead of 1 in E and use the Viterbi algorithm unchanged.
In this case, the path with the largest score (the one with the least negative score)

6 EXTENDED EXAMPLES 48

represents the edit distance. The actual edits (i.e. the insertions, deletions, and
substitutions) can be found by computing the Viterbi path.

Example 6.1 (). Compute the edit distance graph P between x = aba and
y = aabb, the edit distance between the two sequences, and one possible set of
operations which attain the edit distance.

Proof. Using an equivalent but more compact representation of the edit distance
graph E∗ yields the graph P = X ◦ E∗ ◦ Y, shown in figure 6.5. Each path
in P represents a unique conversion of X into Y using insertion, deletion, and
substitution operations. The negation of the score of the path is the number of
such operations required.

For example, the path along the state sequence 0→ 1→ 6→ 11→ 16 converts x
to y with a distance of two using an insertion at the second letter and a substitution
at the end:

a b a

I S

a a b b

The Viterbi score and Viterbi path yield the edit distance between x and y and
the sequence of edit operations required to attain the edit distance. The Viterbi
path for the example is shown in figure 6.6.

�

6.3 n-gram Language Model

In this example we will encode an n-gram language model as an acceptor. We
will then use the acceptor to compute the language model probability for a given
sequence.

Let’s start with a very simple example. Suppose we have the token set {a, b, c}
and we want to construct a unigram language model. Given counts of occurrences
for each token in the vocabulary, we can construct an acceptor to represent the
unigram language model. Suppose we are given the probabilities 0.5, 0.2, and
0.3 for a, b, and c respectively. The corresponding unigram graph is shown in
figure 6.7. Note that the edge weights are log probabilities.

Now assume we are given the sequence aa for which we would like to compute
the probability. The probability under the language model is 1

2 ·
1
2 = 1

4 . We can

6 EXTENDED EXAMPLES 49

0 1
a:a/0

2
a:ε/-1

3

ε:a/-1

4
b:a/-1

5

b:ε/-1

6

ε:a/-1

ε:a/-1

b:a/-1

7
b:ε/-1

a:ε/-1

a:a/0

8

ε:a/-1

9
a:b/-1

10
a:ε/-1

11

ε:b/-1

ε:a/-1

a:a/0

12
a:ε/-1

b:ε/-1

b:b/0

13

ε:b/-1

ε:a/-1

a:a/0

14a:ε/-1

a:ε/-1

a:b/-1

15

ε:b/-1

16

ε:b/-1

ε:b/-1

a:ε/-1

a:b/-1

17

ε:b/-1

ε:a/-1

b:ε/-1

b:b/0

18

ε:b/-1

ε:a/-1

a:ε/-1

a:b/-1

19

ε:b/-1

a:ε/-1

b:ε/-1

a:ε/-1

Figure 6.5: The graph P = X ◦ E∗ ◦ Y represents all possible ways to convert x = aba to
y = aabb using insertions, deletions, and substitutions. Since the penalties are negative,
the score of the highest scoring path is the edit distance between the two sequences. The
path itself encodes the sequence of operations required.

0 1
ε:a/-1

2
a:a/0

3
b:b/0

4
a:b/-1

Figure 6.6: The Viterbi path of the graph P = X ◦ E∗ ◦ Y. The edit distance is 2 with
one insertions (the arc between states 0 and 1) and one substitution (the arc between
states 3 and 4).

0

a/-0.69
b/-1.51
c/-1.20

Figure 6.7: A unigram graph U for {a, b, c}.

6 EXTENDED EXAMPLES 50

0 1
a/-0.693147

2
a/-0.693147

Figure 6.8: The sequence aa scored with the unigram log probabilities from the graph
U in figure 6.7.

compute the log probability of aa by intersecting its graph representation X with
the unigram graph U and then computing the forward score:

log p(aa) = LSE(X ◦ U)

The graph in figure 6.8 shows the intersection X ◦ U . The arc edges in the
intersected graph contain the correct unigram scores, and the forward score gives
the log probability of the sequence aa. In this case, the Viterbi score would give
the same result since the graph has only one path.

For an arbitrary sequence x with a graph representation X and an arbitrary
n-gram language model with graph representation N , the log probability of x is
given by:

log p(x) = LSE(X ◦ N).

Next, let’s see how to represent a bigram language model as a graph. From
there, the generalization to arbitrary order n is relatively straightforward. Assume
again we have the token set {a, b, c}. The bigram model is shown in the graph
in figure 6.9. Each state is labeled with the token representing the most recently
seen input. For a bigram model we only need to remember the previous token to
know which score to use when processing the next token. For a trigram model we
would need to remember the previous two tokens. For an n-gram model we would
need to remember the previous n − 1 tokens. The label and score pair leaving
each state represent the corresponding conditional probability (technically these
should be log probabilities). Each state has an outgoing arc for every possible
token in the token set.

Example 6.2. Compute the number of states and arcs in a graph representation
of an n-gram language model for a given order n and a token set size of v.

For order n, the graph needs a state for every possible token sequence of length
n− 1. This means that the graph will have vn−1 states. Each state has v outgoing
arcs. Thus the total number of arcs in the graph is v · vn−1 = vn. This should be
expected given that the language model assigns a score for every possible sequence
of length n. �

6 EXTENDED EXAMPLES 51

a

a/p(a | a) bb/p(b | a)

cc/p(c | a)

b/p(a | b)

a/p(b | b)

c/p(c | b)

a/p(a | c)

b/p(b | c)

c/p(c | c)

Figure 6.9: A bigram model for the token set {a, b, c}. Each arc is labeled with the next
observed token and the corresponding bigram probability.

6.4 Automatic Segmentation Criterion

In machine-learning applications with sequential data, we often need to compute
a conditional probability of an output sequence given an input sequence when
the two sequences do not have the same length. The Automatic Segmentation
criterion (ASG) is one of several common loss functions for which this is possible.
However, ASG is limited to the case when the output sequence is no longer than
the input sequence.

Assume we have an input sequence of T vectors X = [x1, . . . ,xT] and an output
sequence of U tokens, y = [y1, . . . , yU] such that U ≤ T . We don’t know the actual
alignment between X and y, and in many applications we don’t need it. For
example, in speech recognition X consists of frames of Fourier-transformed audio,
and y could be letters of a transcript. We usually don’t need to know how y aligns
to X; we only require that y is the correct transcript. To get around not knowing
this alignment, the ASG criterion marginalizes over all possible alignments between
X and y.

In ASG, the output sequence is aligned to a given input by allowing one or more
consecutive repeats of each token in the output. Suppose we have an input of
length 5 and the output sequence ab. Some possible alignments of the output are
aaabb, abbbb, and aaaab. Some invalid alignments are abbbba, aaab, and aaaaa.
These are invalid because the first corresponds to the output aba, the second is
too short, and the third corresponds to the output a.

For each time-step of the input, we have a model st(a) which assigns a score for
every possible output token a. Note the model st(·) is conditioned on some or all
of X, but I won’t include this in the notation for simplicity. Let a = [a1, . . . , aT]

6 EXTENDED EXAMPLES 52

be one possible alignment between X and y. The alignment a also has length T .
To compute a score for a, we sum the sequence of scores for each token:

s(a) =

T∑
t=1

st(at)

Let AX,y denote the set of all possible alignments between X and y. We use the
individual alignment scores to compute a conditional probability of the output y
given the input X by marginalizing over AX,y:

log p(y | X) = LSE
a∈AX,y

s(a)− logZ.

The normalization term Z is given by:

Z =
∑
a∈ZX

es(a),

where ZX is the set of all possible length T alignments (the same length as X).
Computing the summations over AX,y and ZX explicitly is not tractable because
the sizes of these sets grow rapidly with the lengths of X and y. Let’s instead use
automata to encode these sets and efficiently compute the summation using the
forward score operation. I will use the script variables AX,y and ZX to represent
both sets of sequences and the analogous graph. It will be clear from context
which representation is intended.

Let’s start with the normalization term Z. The set ZX encodes all possible outputs
of length T , where T is the length of X. As an example, assume T = 4 and we have
three possible output tokens {a, b, c}. If the scores for each output are independent,
we can represent ZX with the graph in figure 6.10. The scores on the arcs are given
by the model st(·). These scores are often called the emissions, and the graph
itself is sometimes called the emissions graph. I’ll use E to represent the emissions
graph. In this case the emissions graph E is the same as the normalization graph
ZX; however, in general they may be different. The log normalization term is the
forward score of the emissions graph, logZ = LSE(E).

Let’s turn to the set AX,y which we will also represent as an acceptor. This
acceptor should have a path for every possible alignment between X and y. We’ll
construct AX,y in two steps. First, we can encode the set of allowed alignments
of arbitrary length for a given sequence y with a graph, Ay. As an example, the
graph Ay for the sequence ab is shown in figure 6.11.

6 EXTENDED EXAMPLES 53

0 1

a/-0.2

b/-0.7

c/0.1
2

a/0.7

b/-0

c/0.1
3

a/-1.7

b/0.2

c/-0
4

a/0.4

b/0.3

c/1.5

Figure 6.10: An emissions graph E with T = 4 time-steps and a token set of {a, b, c}.

0

a/0

1
a/0

b/0

2
b/0

Figure 6.11: The ASG alignment graph Ay for the sequence ab. The graph encodes the
fact that each output token can repeat one or more times in an arbitrary length alignment.

The graph in figure 6.11 has a simple interpretation. Each token in the output ab
can repeat one or more times in the alignment. We can then construct AX,y by
intersecting Ay with the emissions graph E , which represents all possible sequences
of length T . This gives AX,y = Ay ◦E . An example of AX,y is shown in figure 6.12
for the sequence ab with T = 4.

In terms of graph operations, we can write the ASG criterion as:

log p(y | X) = LSE(Ay ◦ E)− LSE(E). (5)

Global or Local Normalization

The ASG criterion is globally normalized. The term Z is the global
normalization term. It ensures that the conditional probability p(y | X)
distribution is valid in that it sums to one over y. The global normalization
term Z (also known as the partition function) is often the most expensive

0

1a/-0.2

2

a/-0.2

3a/0.7

4

a/0.7

b/0

5

a/-1.7

b/0.2 6
b/0.3

Figure 6.12: The alignment graph AX,y for the input X with T = 4 time-steps and an
output y = ab.

6 EXTENDED EXAMPLES 54

part of the loss to compute.

In some cases the global normalization can be avoided by using a
local normalization. For example, in the transition-free version of ASG
described above, the path score for a decomposes into a separate score
for each time-step. In this case, we can compute the exact same loss by
normalizing the scores st(a) at each time-step and dropping the term Z.
Concretely, we compute the normalized scores at each time-step:

pt(a) =
est(a)∑
z e

st(z)
.

We then replace the unnormalized scores with the log-normalized scores
when computing the score for an alignment:

log p(a) =

T∑
t=1

log pt(at).

As a last step, we remove the global normalization term Z from the loss
function, but leave it otherwise unchanged:

log p(y | X) = LSE
a∈AX,y

log p(a).

In the version which uses graph operations, the log-normalized scores
log pt(y) become the arc weights of the emissions graph E . The graph based
loss function then simplifies to:

log p(y | X) = LSE(Ay ◦ E).

We can prove that the locally normalized version of the transition-free ASG
loss is equivalent to the globally normalized version. To do this, we need to
show:

LSE
a∈AX,y

log p(a) = LSE
a∈AX,y

s(a)− logZ (6)

To show this, we need two identities. The first identity lets us pull indepen-
dent terms out of the LSE operation:

LSE
x

(x+ y) = LSE(x) + y.

6 EXTENDED EXAMPLES 55

The proof of this identity is below:

LSE
x

(x+y) = log
∑
x

ex+y = log
∑
x

exey = log
∑
x

ex+log ey = LSE(x)+y.

The second identity lets us rearrange products and sums:

T∏
t=1

∑
z

st(z) =
∑
z

t∏
t=1

st(zt).

The term on the left is the product over t of the sum of st(z) over all possible
values of the token z. The term on the right is sum over all possible token
sequences z of length T of the product scores st(zt) for each time-step in
the sequence. A short proof is below:

T∏
t=1

∑
z

st(z) =

(∑
z

s1(z)

)
. . .

(∑
z

sT (z)

)

=
∑
z1

. . .
∑
zT

T∏
t=1

st(zt)

=
∑
z

T∏
t=1

st(zt).

We are now ready to verify equation 6. Starting from the left hand side of
equation 6, we have:

LSE
a∈AX,y

log p(a) = LSE
a∈AX,y

T∑
t=1

log pt(at)

= LSE
a∈AX,y

T∑
t=1

log
est(at)∑
z e

st(z)

= LSE
a∈AX,y

(
T∑
t=1

st(at)−
T∑
t=1

log
∑
z

est(z)

)
.

6 EXTENDED EXAMPLES 56

Using the first identity, we get:

LSE
a∈AX,y

log p(a) = LSE
a∈AX,y

(
T∑
t=1

st(at)

)
−

T∑
t=1

log
∑
z

est(z)

The first term on the right is:

LSE
a∈AX,y

(
T∑
t=1

st(at)

)
= LSE

a∈AX,y

s(a).

Using the second identity, the second term on the right becomes:

T∑
t=1

log
∑
z

est(z) = log
T∏
t=1

∑
z

est(z)

= log
∑
z∈ZX

T∏
t=1

est(zt)

= log
∑
z∈ZX

e
∑T

t=1 st(zt)

= log
∑
z∈ZX

es(z)

= logZ.

Putting these two terms together yields the right hand side of equation 6.

6.4.1 Transitions

The original ASG loss function also includes bigram transition scores. The
alignment score with transitions, h(at−1, at), included is given by:

s(a) =
T∑
t=1

st(at) + h(at, at−1),

where a0 is a special start of sequence token ¡s¿. We can use the alignment scores
in the same manner as above and the rest of the loss function is unchanged.

Let’s see how to incorporate transitions using an acceptor and graph operations.

6 EXTENDED EXAMPLES 57

<s>

a

a

bb

c

c

a

b

c

a

b

c

a

b

c

Figure 6.13: The acceptor represents a bigram transition model for the token set {a, b, c}
(the arc weights are not shown). Each path begins in the start state denoted by the
start-of-sequence symbol <s>.

I’ll rely on the ideas introduced in section 6.3 on n-gram language models, so now
is a good time to review that section. The first step is to encode the bigram model
as a graph, as in figure 6.13.

To incorporate transition scores for the output sequence, we intersect the bigram
graph B with the output alignment graph Ay. To incorporate transition scores in
the normalization term Z, we intersect B with the emissions graph E . The loss
function using graph operations including transitions becomes:

log p(y | X) = LSE(B ◦ Ay ◦ E)− LSE(B ◦ E).

We see here an example of the expressive power of a graph-based implementation
of the loss function. In a non-graph-based implementation of ASG, the use of a
bigram transition function is hard-coded. In the graph-based version, the transition
model B could be a unigram, bigram, trigram, or otherwise arbitrary n-gram. Of
course, the size of the transition graph increases rapidly with the order n and the
size of the token set (see example 6.2). This causes problems with both sample and
computational efficiency. Thus, in practice ASG is used with a bigram transition
model and token set sizes rarely larger than a hundred.

The arc weights on the transition graph (the scores h(at, at−1)), are typically
parameters of the model and learned directly. This means we need to compute
the gradient of the ASG loss with respect to these scores. These derivatives are
straightforward to compute in a framework with automatic differentiation.

6 EXTENDED EXAMPLES 58

def ASG(E, B, Ay):

Compute constrained and normalization graphs:

AXy = gtn.intersect(gtn.intersect(B, Ay), E)

ZX = gtn.intersect(B, E)

Forward both graphs:

AXy_score = gtn.forward_score(AXy)

ZX_score = gtn.forward_score(ZX)

Compute the loss:

loss = gtn.negate(gtn.subtract(AXy_score , ZX_score))

Clear the previous gradients:

E.zero_grad ()

B.zero_grad ()

Compute gradients:

gtn.backward(loss , retain_graph=False)

Return the loss and the gradients:

return loss.item(), E.grad(), B.grad()

Figure 6.14: An example implementation of the ASG loss function which takes as input
the emissions graph E , the transitions graph B, and the target alignment graph Ay. The
implementation uses the GTN framework.

6 EXTENDED EXAMPLES 59

0 1
a:a/0

2
b:b/0

Figure 6.15: The graph Y corresponding to the target sequence y = ab.

An example implementation of the ASG loss function in the GTN framework 3

is shown in figure 6.14. This function takes as input an emissions graph E , a
transitions graph B, and an output alignment graph Ay is shown below. I would
like to make three observations about this code:

1. The implementation is concise. Given the appropriate graph inputs, the
complete loss function requires only eight short lines using ten function calls.

2. The code should look familiar to users of tensor-based frameworks like
PyTorch. Other than the different operation names, the imperative style
and gradient computation is no different with graphs than it is with tensors.

3. The code is generic. For example, we can pass a trigram model as the input
graph argument ‘B‘ without needing to change the function.

6.4.2 ASG with Transducers

As a final step, I’ll show how to construct the ASG criterion from even simpler
transducer building blocks. The advantage of this approach is that it lets us easily
experiment with changes to the criterion at a deeper level.

Our goal is to compute Ay from simpler graphs instead of hard-coding its structure
directly. The simpler graphs will represent the individual tokens and the target
sequence y.

The target sequence graph Y is a simple linear-chain graph with arc labels taken
consecutively from the sequence y. The graph in figure 6.15 shows an example for
the sequence ab.

Next we construct the individual token graphs. These graphs encode the assump-
tion that each token in an output maps to one or more repeats of the same token
in an alignment. For example for the output y = ab and alignment a = aaaabb
the token a maps to aaaa and b maps to bb. For the token a, the token graph Ta
shown in figure 6.16 has the desired property.

3The GTN framework is open source and available at https://github.com/gtn-org/gtn

https://github.com/gtn-org/gtn

6 EXTENDED EXAMPLES 60

0 1
a:a/0

a:ε/0

Figure 6.16: An individual token graph Ta for the token a. The graph encodes the fact
that the output a can map to one or more repeats in the alignment.

0

1
ε:ε/0

3

ε:ε/0

5

ε:ε/0

2

a:a/0

4b:b/0

6

c:c/0

ε:ε/0

a:ε/0

ε:ε/0

b:ε/0

ε:ε/0

c:ε/0

Figure 6.17: The complete token graph T for the token set {a, b, c}. The token
graph is constructed by taking the closure of the union of the individual token graphs,
T = (Ta + Tb + Tc)∗.

Since an output sequence can consist of any sequence of tokens from the token set,
we construct the complete token graph T by taking the union of the individual
token graphs and computing the closure. If we have a token set {a, b, c}, then we
construct individual token graphs Ta, Tb, and Tc. The complete token graph T is
given by T = (Ta + Tb + Tc)∗. The complete token graph is shown in figure 6.17.

The graph Ay can then be constructed by composing T and Y. In other words,
Ay = T ◦ Y. We have to be careful here. The graphs T and Y are transducers
and their order in the composition makes a difference. Because of the way we
constructed them, we will only get the correct Ay if T is the first argument to the
composition.

6 EXTENDED EXAMPLES 61

At this point, we can compute the ASG loss just as before using equation 5. The
remaining graphs E and B are unchanged.

This decomposition of the ASG loss using simple graph building blocks makes it
easier to change. In the following section, I will show how to construct a different
algorithm, Connectionist Temporal Classification, with only a minor modification
to the ASG loss.

6.5 Connectionist Temporal Classification

Connectionist Temporal Classification (CTC) is another loss function which assigns
a conditional probability p(y | X) when the input length T and output length
U are variable, and the alignment between them is unknown. Like ASG, CTC
gets around the fact that the alignment is unknown by assuming a set of allowed
alignments and marginalizing over this set. In CTC, the length of the output y is
also constrained in terms of the length of the input. For CTC, the output length
U must satisfy U +Ry ≤ T , where Ry is the number of consecutive repeats in y.

The ASG loss function has two modeling limitations which CTC attempts to
improve. First, ASG does not elegantly handle repeat tokens in the output. Second,
ASG does not allow for optional null inputs. I’ll discuss each of these in turn.

Repeat Tokens: A repeat token is two consecutive tokens with the same value.
For example, the b’s in abba is a repeat, but the a is not. In ASG, repeat tokens
in the output create an ambiguity. A single alignment can map to multiple output
sequences. For example, consider the alignment abbbaa. This can map to any of
the outputs aba, abba, abbba, abaa, abbaa, or abbbaa. There are several heuristics
to resolve this. One option is to use special tokens for repeat characters. For
example if y = abba, then we could encode it as ab2a, where b2 corresponds to two
b’s. In this case, the alignment abbba corresponds to the output aba, the alignment
ab2b2b2a corresponds to the output abba, and the alignment abbb2a corresponds
to abbba.

There are two problems with this solution. First, we have to hard code into the
token set an upper limit on the number of repeats to allow. Second, if we allow
n repeats, then we multiply the token set size by a factor of n causing potential
computation and sample efficiency issues.

Blank Inputs: The second problem with ASG is it dos not allow optional null
inputs. Any output token yu must map to a corresponding input xt. In some
cases, the yu may not meaningfully correspond to any input. The blank token in

6 EXTENDED EXAMPLES 62

0

/0

1
a/0

a/0
2/0

3b/0

/0

b/0

b/0

4
/0

/0

Figure 6.18: The CTC alignment graph Ay for the sequence ab. The graph encodes
the fact that each output token can repeat one or more with an optional at the
beginning, end, or in between a and b.

CTC allows for this by representing an input time step which does not correspond
to any output.

I’ll denote the CTC blank token with . The token can appear zero or
more times in the alignment, and it can be at the beginning, in between, or end of
the tokens of the output y. If y has consecutive repeats, then there must be at
least one between them in any alignment. So the optional blank token is a
solution to both the modeling of null input time steps as well as repeat tokens in
the output. Note also that non-optional blank between repeat tokens is why in
CTC the output length must satisfy U +Ry < T .

As an example, suppose we have an input of length 5 and the output sequence abb.
Some allowed alignments are abbb, abbb, or aabb. Some alignments
which are not allowed are aabbb and aabb, both of which correspond to the
output ab instead of abb.

In equations, CTC is indistinguishable from ASG without transitions. The loss is
given by:

log p(y | X) = LSE
a∈AX,y

log p(a).

The distinction between ASG and CTC is in the set of allowed alignments AX,y.
Assuming we have log normalized scores on the arc weights of the emissions graph
E , the graph-based CTC loss is:

log p(y | X) = LSE(Ay ◦ E),

where the distinction from ASG is in the graph Ay. An example alignment graph
Ay for CTC for the sequence ab is shown in figure 6.18.

The CTC alignment graph encodes the assumptions regarding the blank token,
. The alignment can optionally start with as in state 0. The alignment

6 EXTENDED EXAMPLES 63

0

/0

1
a/0

a/0

2
/0

/0

3
a/0

a/0

4
/0

/0

Figure 6.19: The CTC alignment graph Ay for the sequence aa.

can optionally end in since both state 3 and 4 are accept states. And lastly,
the blank is optional between a and b since there is both an arc between states 1
and 3 and a path through state 2 which emits a .

Example 6.3. Construct the CTC Ay graph for the sequence aa.

The graph Ay for the sequence y = aa is shown in figure 6.19. Notice the
token in between the first and second a is not optional. The only difference
between the graph for aa and the graph for ab is the removal of the arc between
states 1 and 3. �

6.5.1 CTC from Transducers

Like ASG we can construct the graph Ay used in CTC from smaller building
blocks. In fact, one of the motivations of decomposing ASG into simpler transducer
building blocks is that it makes constructing CTC almost trivial. To get CTC, we
just need to add the token to the tokens graph with the correct semantics.
The token graph is a single start and accept state which encodes the fact
that the blank is optional. The state has a self-loop which transduces to ε,
since never yields an output token.

Recall for ASG with the alphabet {a, b, c}, the graph Ay is given by:

Ay = (Ta + Tb + Tc)∗ ◦ Y.

Assuming T represents the token transducer as described above, the CTC
graph Ay is given by:

Ay = (Ta + Tb + Tc + T)∗ ◦ Y.

The equation above shows how CTC is really the result of one core additional
building block encoding the correct behavior of the token. There is one
caveat which is that the equation does not force the token in between repeats,
so they are not handled correctly. Encoding this constraint through operations on
the simpler transducers requires more work but is certainly doable.

	Extended Examples
	Counting n-grams
	Edit Distance
	n-gram Language Model
	Automatic Segmentation Criterion
	Connectionist Temporal Classification

