
5 DIFFERENTIATION WITH AUTOMATA 39

5 Differentiation with Automata

Modern deep learning relies on the fact that core functions are differentiable (or
sub-differentiable). This is important to any type of gradient-based numerical
optimization, of which the most commonly used are variations of stochastic gradient
descent. The parameters, θ, of the model are specified in tensors. The objective
function, f(θ,x,y), is a function of the parameters and the input data x and y.
The parameters can then be optimized to improve the objective with variations of
a simple update rule:

θt = θt−1 + α∇θf(θt,x,y),

where α is the learning rate, and ∇θ is the gradient operator which we describe in
more detail below. This update applies equally well to parameters in graphs as it
does to tensors. The main challenge is computing gradients, the subject of this
section.

5.1 Derivatives

Many operations used with vectors, matrices, and n-dimensional tensors are
differentiable. This means we can compute the change in any of the output
elements with respect to an infinitesimal change in any of the input elements.
For example, consider a vector z = f(x,y) which is the output of a function
of two vectors x and y. The Jacobian of z with respect to x is the matrix of
partial derivatives with entries ∂zi

∂xj
. The gradient is defined as the tensor of partial

derivatives of a scalar function. So if f(x) ∈ R is a scalar function, then the
gradient is:

∇f(x) =

[
∂f(x)

∂x1
, . . . ,

∂f(x)

∂xn

]>
.

In the same way, we can compute partial derivatives of the arc weights of an
output graph for a given operation with respect to the arc weights of any of the
input graphs. Take the concatenation operation as an example. Suppose we are
given two graphs, A and B, and we construct the concatenated graph C = AB as
in figure 5.1.

For each of the arc weights Ci in the concatenated graph C, we can compute the
partial derivative with respect to the arc weights of A and B. For any arc in C, it



5 DIFFERENTIATION WITH AUTOMATA 40

0 1
a/A1

b/A2
0 1

b/B1

c/B2
0 1

a/C1

b/C2
2

ε/C3
3

b/C4

c/C5

Figure 5.1: The concatenation of the graphs A (left) and B (middle) produces C (right).
For each graph the arc weights are shown as variables on the edges.

either has a corresponding arc in A or B from which it gets its weight, or it has a
weight of zero. The partial derivative of an output arc weight Ci with respect to
an input arc weight Aj or Bj is 1 if the two arcs correspond and 0 otherwise. For
example, in the graphs in figure 5.1 we have:

∂C1

∂A1
= 1,

∂C2

∂A2
= 1,

∂C4

∂B1
= 1, and

∂C5

∂B2
= 1.

The remaining partial derivatives are all 0. For example, for C1 we have:

∂C1

∂A2
= 0,

∂C1

∂B1
= 0, and

∂C1

∂B2
= 0.

In the following, I use the notation ∂C
∂A to generalize the Jacobian to graphs. This

Jacobian is a data structure which contains the partial derivatives ∂Ci
∂Aj

for all arc

weights Ci in C and Aj in A. Another way to view this Jacobian is as a set of
graphs ∂Ci

∂A indexed by i which are the same size as A. Alternatively we can view

the Jacobian as a set of graphs ∂C
∂Aj

indexed by j which are the same size as C.
This is analogous to viewing the Jacobian of a vector-valued function either as a
set of columns or a set of rows.

Example 5.1. Compute the partial derivatives of the arc weights of the closure
of the graph A from figure 5.1 with respect to the input arc weights. The closure,
A∗, is in figure 5.2.

The non-zero partial derivatives are:

∂w2

∂A1
= 1 and

∂w3

∂A2
= 1.

The remaining partial derivatives are zero:



5 DIFFERENTIATION WITH AUTOMATA 41

0

1ε/w1 2

a/w2

b/w3

ε/w4

Figure 5.2: The closure of the graph A from figure 5.1. The weights are denoted by the
variables wi.

0

a/A1

1
b/A2

c/A3

0 1

a/B1

b/B2

c/B3

2

a/B4

b/B5

c/B6

3

a/B7

b/B8

c/B9

Figure 5.3: We would like to compute the derivative of the intersected graph’s arc
weights with respect to the arc weights in the two input acceptors A and B. The arc
weights are labeled with the variable names Aj and Bk.

∂w1

∂A1
= 0,

∂w1

∂A2
= 0,

∂w2

∂A2
= 0,

∂w3

∂A1
= 0,

∂w4

∂A1
= 0, and

∂w4

∂A2
= 0.

�

Example 5.2. Compute the partial derivatives of the intersected automata weights
wi with respect to the input arc weights Aj for graph A and Bk for graph B shown
in figure 5.3.

The partial derivative ∂wi
∂Aj

is 1 if the weight wi came from Aj and zero otherwise.

The derivatives with a value of 1 for graph A are:

(0, 0)

(0, 1)a/w1

(1, 1)

b/w2

(0, 2)a/w3

(1, 2)

b/w4

c/w5

(1, 3)

b/w6

c/w7

Figure 5.4: The intersected graph of the two acceptors A and B in figure 5.3. The
weights are denoted as variables wi on the edges.



5 DIFFERENTIATION WITH AUTOMATA 42

∂w1

∂A1
,
∂w2

∂A2
,
∂w3

∂A1
,
∂w4

∂A2
,
∂w5

∂A3
,
∂w6

∂A2
, and

∂w7

∂A3
.

The derivatives with a value of 1 for graph B are:

∂w1

∂B1
,
∂w2

∂B2
,
∂w3

∂B4
,
∂w4

∂B5
,
∂w5

∂B6
,
∂w6

∂B8
, and

∂w7

∂B9
.

The remaining derivatives for both graphs are zero. �

5.2 Automatic Differentiation

In the previous section we saw how to compute derivatives for some common
automata operations. Automatic differentiation greatly simplifies the process of
computing derivatives for arbitrary compositions of operations. In this section, we
will discuss reverse-mode automatic differentiation at a high-level.

Reverse-mode automatic differentiation proceeds in two steps. First, a forward
pass computes all of the operations. Then, a backward pass computes the gradients.
During the forward pass the composition of operations is stored in a computation
graph (not to be confused with an automata). Data and metadata are also cached
during the forward pass to make the gradient computation more efficient. There
is often a trade-off between memory and compute in that we can save more
intermediate data to reduce the computation required during but increase the
memory required during the backward pass.

Consider the graph equation:

LSE [((A1 +A2) ◦ X ∗)] . (4)

This equation can be represented in the computation graph in figure 5.5.

The leaves of the computation graph (the solid circular nodes with no incoming
arrows) are either parameter graphs or input data graphs. In this case, let’s
assume A1 and A2 are the parameter graphs, and X is the graph of input data.
The square nodes are operations, and they are always followed by output graphs,
which are dashed circular nodes.

During the backward pass, the gradients are computed from the output (G4 in
figure 5.5) following the arrows in the computation graph backwards. A graph
can only compute its gradient once all of the graphs downstream of it have had



5 DIFFERENTIATION WITH AUTOMATA 43

Figure 5.5: An example of a compute graph for equation 4. The solid circular nodes
are leaves. The graphs A1 and A2 are parameters, and X is input data. The rectangular
nodes are operations. The dashed circular nodes are graphs computed as the result of an
operation.

their gradients computed. Thus the backward pass must be done as a reverse
topological traversal of the computation graph.

For example, assume the gradient of the output G4 with respect to graph G1
has been computed. This gradient ∂G4

∂G1 is then used to compute ∂G4
∂A1

and ∂G4
∂A2

.
Assuming we know how to differentiate G1 with respect to A1 and A2, then we
can compute the desired gradients essentially using the chain rule. Assume gi are
the arc weights of G1 and aj are the arc weights of A1, then the chain rule gives:

∂G4
∂aj

=
∑
i

∂G4
∂gi

∂gi
∂aj

.

This is done recursively at every node in the computation graph until the gradients
for all the leaf graphs are available.

At a high-level any implementation of reverse-mode automatic differentiation
is the same. However, implementations often differ in the details. One simple
approach is to have every output graph record the input graphs from which it
was generated as well as a gradient computation function. The input graphs and
gradient computation function (and any other metadata) can be set during the
forward pass by the operation itself.

For example, after the execution of union, the data structure which holds the
output graph G1 could also hold pointers to the inputs A1 and A2 and a pointer
to the gradient computation function for union. A simplified example of what this
data structure might look like is shown in figure 5.6.

Once the gradient for G1 is available, the union’s gradient function is called with



5 DIFFERENTIATION WITH AUTOMATA 44

Figure 5.6: The data structure which holds the graph G1 as well as the data needed to
compute the gradient of its inputs. In this case G1 was the output of a union of A1 and
A2.

the inputs A1, A2, and ∂G4
∂G1 . For A1, the union gradient function will compute

∂G1
∂A1

and use the chain rule as described above to assemble the desired gradient
∂G4
∂A1

. It will do the same for A2.


	Differentiation with Automata
	Derivatives
	Automatic Differentiation


