
Speech Recognition and Graph
Transformer Networks
Awni Hannun, awni@fb.com

mailto:awni@fb.com

Outline

• Modern Speech Recognition
• Deep Dive: The CTC Loss
• Deep Dive: Decoding with Beam Search
• Graph Transformer Networks

Outline

• Modern Speech Recognition
• Deep Dive: The CTC Loss
• Deep Dive: Decoding with Beam Search
• Graph Transformer Networks

Automatic Speech Recognition

Goal: Input speech output transcription→

“The quick brown fox
jumps over the lazy dog”

Automatic Speech Recognizer

Automatic Speech Recognition

Improved significantly in the past 8 years

human level

2012 2013 2014 2015 2016 2017

6

8

10

12

14

16

w
or

d
er

ro
r r

at
e

Word Error Rate on Switchboard Conversational Phone Speech

Automatic Speech Recognition

But not yet solved!
• Conversation: Fully conversational speech

with multiple speakers

• Noise: Lot’s of background noise

• Bias: Substantially worse performance for
underrepresented groups

Automatic Speech Recognition

But not yet solved!

Automatic Speech Recognition

But not yet solved!

Automatic Speech Recognition

But not yet solved!

“…state-of-the-art (SotA) ASRs struggle
with the large variation in speech due to
e.g., gender, age, speech impairment,
race, and accents”

Automatic Speech Recognition

human level

2012 2013 2014 2015 2016 2017

6

8

10

12

14

16

w
or

d
er

ro
r r

at
e

Question: Why has ASR gotten so much
better? Word Error Rate on Switchboard Conversational Phone Speech

Automatic Speech Recognition

Pre 2012 ASR system:
• Alphabet soup: Too many hand-

engineered components

• Data: Small and not useful

• Cascading errors: Combine modules only
at the inference

• Complex: Difficult to do research

Automatic Speech Recognition

Question: Why has ASR gotten so much
better?

More data
Better models

(end-to-end deep learning)

Automatic Speech Recognition

Answer: End-to-end

acoustic model

acoustic model

acoustic model

acoustic model

phonemes

phonemes

phonemes

phonemes

Decoder

Dictionary
Word

Pronunciations Language Model

speaker
adaptation

speaker
adaptation

speaker
adaptation

speaker
adaptation

features

features

features

features

transcription

Automatic Speech Recognition

DL
acoustic model

phonemes

phonemes

phonemes

phonemes

Decoder

Dictionary
Word

Pronunciations Language Model

features

features

features

features

transcription

Answer: End-to-end

Automatic Speech Recognition

DL
acoustic model

letters

letters

letters

letters

Decoder

Dictionary Language Model

features

features

features

features

transcription

Answer: End-to-end

Automatic Speech Recognition

DL
acoustic model

word pieces

Decoder

Language Model

features

features

features

features

transcription

word pieces

Answer: End-to-end production system

Automatic Speech Recognition

DL
model

word pieces

features

features

features

features

transcription

word pieces

Answer: End-to-end in research

Automatic Speech Recognition

DL
model

word pieces

transcription

word pieces

Answer: End-to-end in research

Outline

• Modern Speech Recognition
• Deep Dive: The CTC Loss
• Deep Dive: Decoding with Beam Search
• Graph Transformer Networks

The CTC Loss
Goal: Given

1. Input speech

2. Output transcription

Compute:

X = [x1, …, xT]

Y = [y1, …, yU]

log P(Y ∣ X; θ)

The CTC Loss
Goal: Given

1. Input speech

2. Output transcription

Compute:

X = [x1, …, xT]

Y = [y1, …, yU]

log P(Y ∣ X; θ)
Ideally differentiable w.r.t.
model parameters

The CTC Loss
Example:

1. Input speech

2. Output transcription

Compute:

X = [x1, x2, x3]

Y = [c, a, t]

log P(c |x1) + log P(a |x2) + log P(t |x3)

The CTC Loss
Example:

1. Input speech

2. Output transcription

Compute:

X = [x1, x2, x3]

Y = [c, a, t]

log P(c |x1) + log P(a |x2) + log P(t |x3)

x1 x2 x3

c a t

The CTC Loss
Example:

1. Input speech

2. Output transcription

Compute:

X = [x1, x2, x3, x4]

Y = [c, a, t]

log P(c |x1) + log P(a |x2) + log P(t |x3) + log P(?? ∣ x4)

x1 x2 x3

c a t

x4

?

The CTC Loss
Alignment: One or more of each input
maps to an output.

x1 x2 x3

c a t

x4

tA1

The CTC Loss

x1 x2 x3

c a t

x4

t

c a a tOr A2

A1

Alignment: One or more of each input
maps to an output.

Or A2

The CTC Loss

x1 x2 x3

c a t

x4

t

c a a t

c c a t

A1

Or A3

Alignment: One or more of each input
maps to an output.

The CTC Loss
Q: Which alignment should we use to compute

 ?log P(Y ∣ X)
x1 x2 x3

c a t

x4

t

c a a t

c c a t

Or A2

A1

Or A3

The CTC Loss
Q: Which alignment should we use to compute

 ?

A: All of them!

log P(Y ∣ X)

log P(Y ∣ X) = log [P(A1 ∣ X) + P(A2 ∣ X) + P(A3 ∣ X)]

The CTC Loss
Reminder: Use to sum log probabilities

Want from and

actual-softmax

log(P1 + P2) log P1 log P2

actual-softmax(log P1, log P2) = log(P1 + P2)

= log(elog P1 + elog P2)

The CTC Loss
Q: Which alignment should we use to compute

 ?

A: All of them!

log P(Y ∣ X)

log P(Y ∣ X)

= log[P(A1 ∣ X) + P(A2 ∣ X) + P(A3 ∣ X)]

= actual-softmax[log P(A1 ∣ X), log P(A2 ∣ X), log P(A3 ∣ X)]

The CTC Loss
Aside: Alignment graph for Y = [c, a, t]

0

c/0

1c/0

a/0

2a/0

t/0

3t/0

The CTC Loss
Problem: has frames and has frames

If and there are
alignments!

(For a fun combinatorics exercise show the exact number is , Hint:

“Stars and Bars.”)

X T Y U

T = 1000 U = 100 ≈ 6.4 × 10139

(T − 1
U − 1)

The CTC Loss
Solution: The Forward algorithm (A.K.A. dynamic
programming)

Forward variable: the score for all alignments of
length which end in .

αu
t

t yu

The CTC Loss
Solution: The Forward algorithm (A.K.A. dynamic
programming)

Example: , X = [x1, x2, x3, x4] Y = [c, a, t]

αc
2 = log P(c |x1) + log P(c |x2)

x1 x2

c c

The CTC Loss
Solution: The Forward algorithm (A.K.A. dynamic
programming)

Example: , X = [x1, x2, x3, x4] Y = [c, a, t]

αa
2 = log P(c |x1) + log P(a |x2)

x1 x2

c a

The CTC Loss
Solution: The Forward algorithm (A.K.A. dynamic
programming)

Example: , X = [x1, x2, x3, x4] Y = [c, a, t]

αa
3 = actual-softmax[log P(A1), log P(A2)]

log P(A1) = log P(c |x1) + log P(c |x2) + log P(a |x3)

log P(A2) = log P(c |x1) + log P(a |x2) + log P(a |x3)

x1 x2

c c

x2

a

c a a

The CTC Loss
Solution: The Forward algorithm (A.K.A. dynamic
programming)

Example: , X = [x1, x2, x3, x4] Y = [c, a, t]

αa
3 = actual-softmax[log P(A1), log P(A2)]

log P(A1) = log P(c |x1) + log P(c |x2) + log P(a |x3)

log P(A2) = log P(c |x1) + log P(a |x2) + log P(a |x3)

αc
2

αa
2

The CTC Loss
Solution: The Forward algorithm (A.K.A. dynamic
programming)

Example: , X = [x1, x2, x3, x4] Y = [c, a, t]

αa
3 = actual-softmax[log P(A1), log P(A2)]

log P(A1) = αc
2 + log P(a |x3)

log P(A2) = αa
2 + log P(a |x3)

The CTC Loss
Solution: The Forward algorithm (A.K.A. dynamic
programming)

Example: , X = [x1, x2, x3, x4] Y = [c, a, t]

αa
3 = actual-softmax[log P(A1), log P(A2)] = actual-softmax[αc

2, αa
2] + log P(a |x3)

log P(A1) = αc
2 + log P(a |x3)

log P(A2) = αa
2 + log P(a |x3)

Exercise: prove this equality!

The CTC Loss
Solution: The Forward algorithm (A.K.A. dynamic
programming)

General recursion:

, X = [x1, x2, x3, …, xT] Y = [y1, y2, …, yU]

αu
t = actual-softmax[αu

t−1, αu−1
t−1] + log P(yu |xt)

The CTC Loss
Solution: The Forward algorithm (A.K.A. dynamic
programming)

General recursion:

,

Final score:

X = [x1, x2, x3, …, xT] Y = [y1, y2, …, yU]

αu
t = actual-softmax[αu

t−1, αu−1
t−1] + log P(yu |xt)

log P(Y |X) = αU
T

The CTC Loss
Solution: The Forward algorithm (A.K.A. dynamic
programming)

x1 x2 x3 x4 x5

c

a

t

αc
1

The CTC Loss
Solution: The Forward algorithm (A.K.A. dynamic
programming)

x1 x2 x3 x4 x5

c

a

t

αc
1 αc

2

αa
2

The CTC Loss
Solution: The Forward algorithm (A.K.A. dynamic
programming)

x1 x2 x3 x4 x5

c

a

t

αc
1 αc

2

αa
2

αc
3

αa
3

α t
3

The CTC Loss
Solution: The Forward algorithm (A.K.A. dynamic
programming)

x1 x2 x3 x4 x5

c

a

t

αc
1 αc

2

αa
2

αc
3

αa
3

α t
3 αt

5αt
4

αa
4

= log P(Y ∣ X)

The CTC Loss
Problem: Not every input corresponds to “speech”

x1 x2 x3

c a ?

x4

t

Can be silence, noise, laughter, …

The CTC Loss
Solution: Use a “garbage” or blank token:

x1 x2 x3

c a

x4

t

Can be silence, noise, laughter, …

The CTC Loss
Solution: Use a “garbage” or blank token:

Blank token is optional
x1 x2 x3

c a

x4

t

x5

t

c a a t t

c a t t

Some allowed
alignments:

The CTC Loss
Solution: Use a “garbage” or blank token:

Blank token is optional
x1 x2 x3

c a t

x4 x5

tAllowed?

The CTC Loss
Solution: Use a “garbage” or blank token:

Blank token is optional
x1 x2 x3

c a t

x4 x5

tNo!

Corresponds to “catt”.

The CTC Loss
Solution: Use a “garbage” or blank token:

Blank token is optional …

except between repeats in Y

Y = [f, o, o, d]

x1 x2 x3

f O

x4

O

x5

d

Not optional!

The CTC Loss
CTC Recursion: Three cases

xt xt+1

a

b

α
t

αb
t

αa
t

αb
t+1

Case 1: Blank is
optional

The CTC Loss
CTC Recursion: Three cases

xt xt+1

a

αa
t

α
t+1 α

t

Case 2: Output is not
optional

The CTC Loss
CTC Recursion: Three cases

xt xt+1

a

α
t

αa
t+1

αa
t

Case 3: Repeats,
blank is not optional

a

The CTC Loss
Aside: The CTC graph

0

/0

1c/0

c/0 2/0

3a/0

/0

a/0
a/0 4/0

5t/0

/0

t/0
t/0

6/0

/0

Outline

• Modern Speech Recognition
• Deep Dive: The CTC Loss
• Deep Dive: Decoding with Beam Search
• Graph Transformer Networks

Inference
Goal: Find the best (transcription) given an (speech)

We have two models:

1. Acoustic model:

2. Language model:

Y X

log P(Y ∣ X)

log P(Y)

Inference
Language Model:

1. Trained on much larger text corpus

2. Fine-tuned for given application (or even user!)

3. Typically word-level n-gram with n between three and
five

log P(Y)

Inference
Goal: Find the best (transcription) given an (speech)

We have two models:

1. Acoustic model:

2. Language model:

Find:

Y X

log P(Y ∣ X)

log P(Y)

Y* = argmaxY log P(Y ∣ X) + log P(Y)

Graph Shortest Path: Greedy

b/4

a /3

c/1

Goal: Find the best (lowest scoring) path in the graph

1

Graph Shortest Path: Greedy

b/4

a /3

c/1

Goal: Find the best (lowest scoring) path in the graph

b/1

b/2

a /4

c/7
31

Graph Shortest Path: Greedy

b/4

a /3

c/1

Goal: Find the best (lowest scoring) path in the graph

b/1

b/2

a /4

c/7
3 b/8

a /9

c/9
111

a /4

Graph Shortest Path: Greedy

b/4

a /3

c/1

Goal: Find the best (lowest scoring) path in the graph

b/1

b/2

a /4

c/7
3 b/8

a /9

c/9
111

a /4
Better
path!

8

Graph Shortest Path: Beam Search
Algorithm:

Repeat:

1. Extend current candidates by all possibilities

2. Sort by score and keep N best

Graph Shortest Path: Beam Search

b/4

a /3

c/1

1

N = 3

4

3

Graph Shortest Path: Beam Search

b/4

a /3

c/1

1

N = 3

4

3 b/3

a /5

c/9

b/8

a /9

c/9

b/7

a /3

c/4

Graph Shortest Path: Beam Search

b/4

a /3

c/1

1

N = 3

4

3 b/3

a /5

c/9

b/8

a /9

c/9

b/7

a /3

c/4

6

4

5

Graph Shortest Path: Beam Search

a /3

c/1

1

N = 3
3 b/3

a /3

c/4

b/1

a /7

c/6

b/8

a /5

c/12

b/1

a /9

c/3
6

4

5

Graph Shortest Path: Beam Search

a /3

c/1

1

N = 3
3 b/3

a /3

c/4

b/1

a /7

c/6

b/8

a /5

c/12

b/1

a /9

c/3
6

4

5

7

9

6

Graph Shortest Path: Beam Search

a /3

c/1

1

N = 3
3 b/3

a /3

c/4

b/1

a /7

c/6

b/8

a /5

c/12

b/1

a /9

c/3
6

4

5

7

9

6

Return N-best list: 
[c, c, b], score=6

[a, b, b], score=7

[a, b, c], score=9

Inference
Goal: Find the best (transcription) given an (speech)

Use beam search to find

Y X

Y* ≈ argmaxY log P(Y ∣ X) + log P(Y)

Outline

• Modern Speech Recognition
• Deep Dive: The CTC Loss
• Deep Dive: Decoding with Beam Search
• Graph Transformer Networks

Weighted Finite State Automata (WFSA)
Remember: Alignment graph for

GTN: WFSAs with automatic differentiation.

Y = [c, a, t]

0

c/0

1c/0

a/0

2a/0

t/0

3t/0

Graph Transformer Networks (GTNs):
History

• Developed by Bottou, Le Cun, et al. at
AT&T in the early 90s

• First used in a state-of-the-art automatic
check-reading system

Graph Transformer Networks (GTNs):
History

For deep learning:
see pages 1-16

For GTNs:
see pages 16-42

GTNs

Graph (WFSA)

Compose

Shortest distance ops
(forward, viterbi)

Unary and binary operations
(closure, union, concatenate, …)

W
Neural Networks

Tensor

Matrix multiplication

Reduction operations
(sum, prod, …)

Unary and binary operations
(negate, add, subtract, …)

Core data structure

Core operations

Example: WFSTs in Speech Recognition

Acoustic
Model

Language
Model

Lexicon

WFST

WFST

WFST

Decoder

Example: WFSTs in Speech Recognition

Acoustic
Model

Language
Model

Lexicon

WFST

WFST

WFST

Decoder
Only combined
when decoding!

Why Differentiable WFSAs?
• Encode Priors: Conveniently encode prior

knowledge into a WFST

• End-to-end: Use at training time avoids
issues such as label bias, exposure bias

• Facilitate Research: Separate data (graph)
from code (operations on graphs)!

Sequence Criteria with WFSAs
Many loss functions are the difference of two
WFSTs

log P(Y ∣ X) = forwardScore(AX,Y) − forwardScore(ZX)

The graph A is a function of the input (e.g.
speech) and target (e.g. transcription)
The graph Z is a function of only the input
The loss is given by:

X
Y

X

Sequence Criteria with WFSTs
Many criteria are the difference of two WFSTs
Includes common loss functions in ASR such:
• Automatic Segmentation Criterion (ASG)
• Connectionist Temporal Classification (CTC)
• Lattice Free MMI (LF-MMI)

Sequence Criteria with WFSTs
Lines of code for CTC: Custom vs GTN

Lines of Code

Warp-CTC 9,742

wav2letter 2,859

PyTorch 1,161

GTN 30

Sequence Criteria with WFSTs
Lines of code for CTC: Custom vs GTN

Lines of Code

Warp-CTC 9,742

wav2letter 2,859

PyTorch 1,161

GTN 30 Same graphs work
for decoding!

Weighted Finite-State Acceptor (WFSA)
A simple WFSA which recognizes aa or ba

• The score of aa is

• The score of ba is
0 + 2 = 2
1 + 2 = 3

0 2a/0
b/1

1a/2

Weighted Finite-State Transducer (WFST)
A simple WFST which transduces ab to xz
and bb to yz.

• The score of ab xz is

• The score of bb yz is

→
1.1 + 3.3 = 4.4

→
2.0 + 3.3 = 5.30 1a:x/1.1

b:y/2
2b:z/3.3

More WFSAs and WFSTs
Cycles and self-loops are allowed

0

a/0

1b/0
c/0

2

b/0

b/0

More WFSAs and WFSTs
Multiple start and accept nodes are allowed

0

1b/0

2
a/0 3

a/0

b/0
a/0

4c/0

b/0

More WFSAs and WFSTs
 transitions are allowed in WFSAsϵ

0 1a/0
ε/0

2b/0

More WFSAs and WFSTs
 transitions are allowed in WFSTs
• The score of aba x is 3.6

ϵ
→

0

a:ε/0.5

1b:ε/1.1 2a:x/2

Operations: Union
The union accepts a sequence if it is
accepted by any of the input graphs.

0 1a/0 2b/0

a/0

0 1b/0 2a/0

0 1a/0 2c/0

union({g1, g2, g3})→

0 1a/0 2b/0

3 4b/0 5a/0

6 7a/0 8c/0

a/0

Recognizes {ac}

Recognizes {ba}

Recognizes {aba*}

Recognizes {ac, ba,
aba*}

Operations: Kleene Closure
Accepts any sequence accepted by the input
graph repeated 0 or more times.

closure(g)

 ↓

Recognizes {aba}

Recognizes { , aba,
abaaba, ...}

ϵ

0 1a/0 2b/0 3a/0

0

1ε/0 2a/0 3b/0

4

a/0

ε/0

Operations: Intersect
1. Any path accepted by both WFSAs is

accepted by the intersection.
2. The score of the path in the intersected

graph is the sum of the scores of the paths
in the input graphs.

Operations: Intersect

0 1 0 21

a/0.4
b/0.3
c/0.3

a/0.1
b/0.8
c/0.1

a/0

b/0

Operations: Intersect

0 1 0 21

a/0.4
b/0.3
c/0.3

a/0.1
b/0.8
c/0.1

a/0

b/0

(0,0)

Intersected graph:

Operations: Intersect

0 1 0 21

a/0.4
b/0.3
c/0.3

a/0.1
b/0.8
c/0.1

a/0

b/0

(0,0)

(0,1)
a/0.4

Intersected graph:

Operations: Intersect

0 1 0 21

a/0.4
b/0.3
c/0.3

a/0.1
b/0.8
c/0.1

a/0

b/0

(0,0)

(0,1)
a/0.4

(1,1)
b/0.3

Intersected graph:

Operations: Intersect

0 1 0 21

a/0.4
b/0.3
c/0.3

a/0.1
b/0.8
c/0.1

a/0

b/0

(0,0)

(0,1)
a/0.4

(1,1)
b/0.3

No match!Intersected graph:

Operations: Intersect

0 1 0 21

a/0.4
b/0.3
c/0.3

a/0.1
b/0.8
c/0.1

a/0

b/0

(0,0)

(0,1)
a/0.4

(1,1)
b/0.3

(0,2)

a/0.1Intersected graph:

Operations: Intersect

0 1 0 21

a/0.4
b/0.3
c/0.3

a/0.1
b/0.8
c/0.1

a/0

b/0

(0,0)

(0,1)
a/0.4

(1,1)b/0.3

(0,2)

a/0.1Intersected
graph:

b/0.8
(1,2)

Operations: Intersect

0 1 0 21

a/0.4
b/0.3
c/0.3

a/0.1
b/0.8
c/0.1

a/0

b/0

No match!

(0,0)

(0,1)
a/0.4

(1,1)b/0.3

(0,2)

a/0.1Intersected
graph:

b/0.8
(1,2)

Operations: Intersect

0 1 0 21

a/0.4
b/0.3
c/0.3

a/0.1
b/0.8
c/0.1

a/0

b/0

(0,0)

(0,1)
a/0.4

(1,1)b/0.3

(0,2)

a/0.1Intersected
graph:

b/0.8
(1,2)

Dead end!

Operations: Intersect

0 1 0 21

a/0.4
b/0.3
c/0.3

a/0.1
b/0.8
c/0.1

a/0

b/0

(0,0) (0,1)a/0.4
(0,2)a/0.1

Intersected
graph:

b/0.8
(1,2)

Dead end!

Operations: Intersect

0 1 0 21

a/0.4
b/0.3
c/0.3

a/0.1
b/0.8
c/0.1

a/0

b/0

(0,0) (0,1)a/0.4

Intersected
graph:

b/0.8 (1,2) No arcs to explore!

Operations: Intersect

0 1 0 21

a/0.4
b/0.3
c/0.3

a/0.1
b/0.8
c/0.1

a/0

b/0

(0,0) (0,1)a/0.4

Intersected
graph:

b/0.8 (1,2)

Operations: Intersect

0

a/0

1b/0

c/0

0 1
a/0
b/0
c/0

2
a/0
b/0
c/0

3
a/0
b/0
c/0

0

1a/0

2
b/0

3a/0

4

b/0

c/0

5

b/0

c/0

intersect(g1, g2)

 ↓

Graph g2Graph g1

Operations: Compose
1. If x y in the first graph and y z in the

second graph then x z in the composed
graph.

2. The score of the composed path is the sum
of the scores of the paths in the input
graphs.

→ →
→

Operations: Compose

compose(g1, g2)

 ↓

Graph g2Graph g1

0

a:x/0

1b:y/0

c:z/0

0 1

x:a/0
x:b/0
y:c/0

2

x:a/0
y:b/0
z:c/0

3
y:a/0
z:b/0
z:c/0

0

1a:a/0

a:b/0

2
b:c/0

3a:a/0

4

b:b/0

c:c/0

5

b:a/0

c:b/0

c:c/0

Operations: Forward Score
Accumulate the scores of all possible paths:
1. Assumes the graph is a DAG
2. Efficient dynamic programming algorithm

x1

x2

xn

yi =
actual-softmaxi(yi + xi)

y1

y2

yn

. . .

Operations: Forward Score

The graph accepts three paths:
• aca with score=1.1+1.4+2.1
• ba with score=3.2+2.1
• ca with score=1.4+2.1

forwardScore(g) is the actual-softmax of the path scores.

0

1a/1.1

2b/3.2

c/1.4

3a/2.1

Sequence Criteria with WFSTs
Simple ASG (AutoSegCriterion) with WFSTs

0 1a/0

a/0

2b/0

b/0

Target graph Y

intersect(Y, E)

 ↓

Emissions graph E

Target constrained graph A

0 1a/1.67
2a/0.17

3

b/0.22

4a/0.67

5

b/-0.55

b/-0.55

6

b/0.41

b/0.41

0 1

a/1.67
b/-0.4
c/1.09

2

a/0.17
b/0.22
c/0.67

3

a/0.67
b/-0.55
c/-0.39

4

a/-0.35
b/0.41
c/-0.38

Sequence Criteria with WFSTs
Simple ASG with WFSTs

Target constrained graph A

loss = -(forwardScore(A) - forwardScore(E))

Normalization graph Z=E

0 1a/1.67
2a/0.17

3

b/0.22

4a/0.67

5

b/-0.55

b/-0.55

6

b/0.41

b/0.41 0 1

a/1.67
b/-0.4
c/1.09

2

a/0.17
b/0.22
c/0.67

3

a/0.67
b/-0.55
c/-0.39

4

a/-0.35
b/0.41
c/-0.38

Sequence Criteria with WFSTs
Make the target graph

0 1a/0

a/0

2b/0

b/0

import gtn

Make the graph:
target = gtn.Graph(calc_grad=False)

Add nodes:
target.add_node(start=True)
target.add_node()
target.add_node(accept=True)

Add arcs:
target.add_arc(src_node=0, dst_node=1, label=0)
target.add_arc(src_node=1, dst_node=1, label=0)
target.add_arc(src_node=1, dst_node=2, label=1)
target.add_arc(src_node=2, dst_node=2, label=1)

Draw the graph:
label_map = {0: 'a', 1: 'b'}
gtn.draw(target, "target.pdf", label_map)

Sequence Criteria with WFSTs
Make the emissions graph import gtn

Emissions array (logits)
emissions_array = np.random.randn(4, 3)

Make the graph:
emissions = gtn.linear_graph(4, 3, calc_grad=True)

Set the weights:
emissions.set_weights(emissions_array)

0 1

a/1.67
b/-0.4
c/1.09

2

a/0.17
b/0.22
c/0.67

3

a/0.67
b/-0.55
c/-0.39

4

a/-0.35
b/0.41
c/-0.38

Example: ASG in GTN
from gtn import *

def ASG(target):
 # Compute constrained and normalization graphs:
 A = intersect(target, emissions)
 Z = emissions

 # Forward both graphs:
 A_score = forward_score(A)
 Z_score = forward_score(Z)

 # Compute loss:
 loss = negate(subtract(A_score, Z_score))

 # Clear previous gradients:
 emissions.zero_grad()

 # Compute gradients:
 backward(loss, retain_graph=False)
 return loss.item(), emissions.grad()

ASG in GTN
Step 1:
Compute the
graphs

def ASG(emissions, target):
 # Compute constrained and normalization graphs:
 A = intersect(target, emissions)
 Z = emissions

Example: ASG in GTN
ASG in GTN

 # Forward both graphs:
 A_score = forward_score(A)
 Z_score = forward_score(Z)

 # Compute loss:
 loss = negate(subtract(A_score, Z_score))

Step 1:
Compute the
graphs
Step 2:
Compute the
loss

from gtn import *

def ASG(emissions, target):
 # Compute constrained and normalization graphs:
 A = intersect(target, emissions)
 Z = emissions

 # Forward both graphs:
 A_score = forward_score(A)
 Z_score = forward_score(Z)

 # Compute loss:
 loss = negate(subtract(A_score, Z_score))

 # Clear previous gradients:
 emissions.zero_grad()

 # Compute gradients:
 backward(loss, retain_graph=False)
 return loss.item(), emissions.grad()

from gtn import *

def ASG(emissions, target):
 # Compute constrained and normalization graphs:
 A = intersect(target, emissions)
 Z = emissions

 # Forward both graphs:
 A_score = forward_score(A)
 Z_score = forward_score(Z)

 # Compute loss:
 loss = negate(subtract(A_score, Z_score))

 # Clear previous gradients:
 emissions.zero_grad()

 # Compute gradients:
 backward(loss, retain_graph=False)
 return loss.item(), emissions.grad()

Example: ASG in GTN
ASG in GTN

Step 1:
Compute the
graphs
Step 2:
Compute the
loss

Step 3:
Automatic
gradients!

 # Clear previous gradients:
 emissions.zero_grad()

 # Compute gradients:
 backward(loss, retain_graph=False)
 return loss.item(), emissions.grad()

Example: ASG in GTN
ASG in GTN

Step 1:
Compute the
graphs
Step 2:
Compute the
loss

Step 3:
Automatic
gradients!

from gtn import *

def ASG(emissions, target):
 # Compute constrained and normalization graphs:
 A = intersect(target, emissions)
 Z = emissions

 # Forward both graphs:
 A_score = forward_score(A)
 Z_score = forward_score(Z)

 # Compute loss:
 loss = negate(subtract(A_score, Z_score))

 # Clear previous gradients:
 emissions.zero_grad()

 # Compute gradients:
 backward(loss, retain_graph=False)
 return loss.item(), emissions.grad()

Example: CTC in GTN
from gtn import *

def CTC(emissions, target):
 # Compute constrained and normalization graphs:
 A = intersect(target, emissions)
 Z = emissions

 # Forward both graphs:
 A_score = forward_score(A)
 Z_score = forward_score(Z)

 # Compute loss:
 loss = negate(subtract(A_score, Z_score))

 # Clear previous gradients:
 emissions.zero_grad()

 # Compute gradients:
 backward(loss, retain_graph=False)
 return loss.item(), emissions.grad()

CTC in GTN

from gtn import *

def CTC(emissions, target):
 # Compute constrained and normalization graphs:
 A = intersect(target, emissions)
 Z = emissions

 # Forward both graphs:
 A_score = forward_score(A)
 Z_score = forward_score(Z)

 # Compute loss:
 loss = negate(subtract(A_score, Z_score))

 # Clear previous gradients:
 emissions.zero_grad()

 # Compute gradients:
 backward(loss, retain_graph=False)
 return loss.item(), emissions.grad()

Example: CTC in GTN
CTC in GTN

Only difference!

Thanks!
References and Further Reading:
CTC

• Connectionist Temporal Classification : Labelling Unsegmented Sequence Data with Recurrent Neural Networks , Graves, et
al. 2006, ICML

• Sequence Modeling with CTC, Hannun. 2017, Distill, https://distill.pub/2017/ctc/
GTNs

• Gradient-based learning applied to document recognition, LeCun, et al. 1998, Proc. IEEE
• Global Training of Document Processing Systems using Graph Transformer Networks, Bottou, et al. 1997, CVPR
• More references: https://leon.bottou.org/talks/gtn

Modern GTNs
• Code: https://github.com/facebookresearch/gtn, pip install gtn
• Differentiable Weighted Finite-State Transducers, Hannun, et al. 2020, https://arxiv.org/abs/2010.01003

https://distill.pub/2017/ctc/
https://leon.bottou.org/talks/gtn
https://github.com/facebookresearch/gtn
https://arxiv.org/abs/2010.01003

