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ABSTRACT

We apply a machine learning approach to improve noisy
acoustic features for robust speech recognition. Specifically,
we train a deep, recurrent neural network to map noise-
corrupted input features to their corresponding clean ver-
sions. We introduce several improvements to previously pro-
posed neural network feature enhancement architectures. The
model does not include assumptions about the specific noise
and distortions present in CHiME data, but does assume noisy
and clean stereo pairs are available for training. When used
with the standard recognizer on the small vocabulary task
(track 1), our approach demonstrates substantial improve-
ments over the challenge baseline.

Index Terms— 2nd CHiME Challenge, neural networks,
speech enhancement

1. INTRODUCTION

Background noise and channel distortions introduced when
performing automatic speech recognition (ASR) in home en-
vironments are hard to anticipate and highly complex. Hand-
designing a procedure to reduce noise and distortion in such a
wide variety of environments presents a huge challenge. Au-
tomatically learning such a function from data offers an at-
tractive alternative, as a learning system can adapt to noises
and distortions present in the training data. Further, a ma-
chine learning approach, in particular neural networks, can
create complex non-linear functions which may be difficult
for a human engineer to invent.

Previous work introduced deep recurrent autoencoder
neural networks (DRDAEs) as an approach for acoustic fea-
ture enhancement in robust ASR [1]. Feature enhancement
with DRDAEsS resulted in error rates competitive with state-
of-the-art noise reduction approaches on the Aurora2 dataset
[2]. Furthermore, noise reduction appears to be a better use
of a neural network architecture for robust ASR as compared
with hybrid and tandem approaches [3], though more thor-
ough comparisons are necessary. Our approach to the 2nd
CHiME Challenge track 1 task [4] applies the same basic DR-
DAE approach. We train a recurrent neural network to predict
clean acoustic features from the noisy inputs. As compared
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with Aurora2, CHiME offers more challenging environmen-
tal noise along with reverberation distortions. We developed
several extensions to the basic DRDAE model which yielded
significant improvements in preliminary experiments on Au-
rora2. In this paper we present the model improvements along
with results on the 2nd CHiME Challenge track 1 develop-
ment and test sets.

2. FEATURE ENHANCEMENT APPROACH

We train a DRDAE neural network to predict clean acoustic
features y from the noisy input features z. This work presents
three improvements to the existing DRDAE approach. First,
we apply cepstral mean and variance normalization (CMVN)
independently to both the input and output features [5].
CMVN serves to normalize utterances which otherwise have
large differences in feature norm across SNRs. We note that
CMVN is similar to whitening procedures widely used to im-
prove performance of neural network models on computer vi-
sion tasks [6]. Second, we input additional information to
the DRDAE beyond the noisy acoustic features. In particu-
lar, we include an estimate of the background noise at each
frame along with the input window of acoustic features. In
principle, the DRDAE approach allows for a variety of side
information or feature transforms at the input layer. There
is no requirement of uncorrelated inputs, and during training
the model can learn to combine inputs appropriately. Third,
we extend the DRDAE architecture by adding a “short cir-
cuit” layer — a linear weight matrix mapping from the input
features directly to the output. This direct output pathway im-
proves performance in high SNR conditions where the correct
feature transformation is close to the identity function.
Figure 1 shows the DRDAE architecture used. The
network has two fully connected hidden layers, each with
512 hidden units using the hyperbolic tangent non-linearity.
The output layer is linear to predict continuous-valued clean
acoustic features. The second hidden layer is temporally re-
current with a full weight matrix W,.. An input window of
+/ — 7 MFCC features (without deltas or acceleration) serves
as context when predicting the clean version of the center fea-
ture. Deltas and accelerations are computed on the predicted
clean features before running the recognizer. Please see the
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Fig. 1. Deep Recurrent Denoising Autoencoder. The network
has two hidden layers (gray) and a short circuit connection
directly from the input to output layer (dotted line). Input
consists of a window of MFCC features () along with an
estimate of the background noise (z).

original DRDAE denoising paper for a more thorough expla-
nation [1]. The short circuit connections constitute an addi-
tional linear mapping W, from the inputs directly to the out-
put layer. At each time 7, we include as part of the DRDAE
input an estimate z; of the background noise. We use the av-
eraged first 10 frames of the utterance as a noise estimator,
z = 15 Z;il x;, where x; is a frame of MFCC features.
This estimator is quite simple and assumes the background
noise is stationary, but has been shown to often work well in
practice.

3. EXPERIMENTS

We train a single DRDAE on all isolated training utterances,
with the noisy utterance as input and clean as target. We use
batch L-BFGS optimization, which has been shown to work
well in practice for training neural networks [7]. We train
the model until development set performance ceases to in-
crease. Utterances were chunked into sequences of at most
100 frames for backpropagation through time for training. At
test time, the network passes over the entire input sequence
using full history. Table 1 shows the development set key-
word accuracy for a DRDAE trained with 512 and 1024 hid-
den units in each layer. The unmodified recognizer is trained
and evaluated on features output by the DRDAE.

In spite of the rich background noise used in the data,
overfitting is a substantial problem for the DRDAE. Per-
formance on the development set begins to decrease within
about 500 iterations of the optimization algorithm, long be-
fore reaching a minimum on the training objective. Fur-
ther, we found no development set performance improvement
when using larger models with more hidden layers. Com-
pared with our experiments on Aurora2, overfitting seems to
be more of a problem on the CHiME task. We hypothesize the
DRDAE model could be more effective with a larger train-
ing set. Regularization techniques such as weight tying or
dropout could further improve the model.

The DRDAE model with 512 hidden units per layer pro-
duces a substantial improvement over the baseline recognizer.
Previous work in robust ASR found that systems which com-

SNR  MFCCDev 1024 Dev 512Dev 512 Test
-6dB 49.67 61.42 61.00 61.00
-3dB 57.92 65.42 65.92 65.67
0dB 67.83 72.67 71.58 73.42
3dB 73.67 77.33 78.25 78.67
6dB 80.75 83.42 82.92 83.33
9dB 82.67 84.50 86.17 85.58
Avg. 68.75 74.12 74.30 74.61

Table 1. Keyword recognition accuracy (%) on the develop-
ment and test sets for MFCC baseline features and DRDAE:s.
We compare DRDAEs with 512 and 1024 units per hidden
layer on the development set.

bine both front end and recognizer modifications tend to per-
form best. Our approach instead focuses only on feature en-
hancement and uses the baseline recognizer. Further, the DR-
DAE approach allows flexibility to aggregate noise estima-
tors and input features, without making assumptions about the
signal. However, as with previous work in supervised train-
ing of denoising algorithms, the model assumes clean/noisy
stereo data is available for training. Unsupervised deep learn-
ing approaches offer opportunities for future work which re-
laxes this assumption. Finally, tasks with more training data
can reduce overfitting and better leverage large capacity deep
learning models.
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